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SIMULTANEOUS COMBINATION, PRINCIPAL
PARAMETRIC AND INTERNAL RESONANCES IN A
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The non-linear dynamics of a parametrically base-excited slender beam carrying a lumped
mass with an excitation frequency nearly equal to twice the second mode natural frequency
is examined. The mass and the position of the attached element are so adjusted that the
system exhibits 1 : 3 : 5 internal resonance by virtue of which a combination resonance of
type u

1
#u

3
occurs simultaneously in the system. The method of multiple scales (mms) is

applied to reduce the second order temporal di!erential equations of motion of the system to
a set of "rst order di!erential equations which is used to study the steady state, periodic,
quasi-periodic and chaotic responses of the system for di!erent control parameters, namely,
frequency and amplitude of base excitation, damping, internal detuning, etc. The results of
perturbation analysis are compared with those obtained by numerically integrating the
original temporal equations of motion. PoincareH section and Lyapunov exponents are used
to characterize the chaotic responses.

( 2001 Academic Press
1. INTRODUCTION

A slender beam with an attached mass can "nd application in the study of vibration [1}12]
of the appendages of space crafts, manipulator arms, high-speed machinery, high rises and
many other structural elements. For some amplitude and frequency of base motion, the
system is subjected to parametric excitation and when the response amplitude becomes
large, non-linearities begin to a!ect the motion and hence one cannot apply the usual
linear analysis to obtain the resonant behaviour. Also, for some location and dimension of
the attached mass, the natural frequencies of the system are commensurable giving rise to
internal resonances [11}13] making the analysis of the system very complex and time
consuming.

Though there are a number of studies available on the base-excited cantilever beam
with an attached mass, most of them deal with the determination of natural frequencies and
linear mode shapes [1}5] and some determine the trivial state stability boundary
and non-linear response of the system with single-mode approximation [6}10]. Zavodney
and Nayfeh [10] studied theoretically as well as experimentally the non-linear response of
a slender beam carrying a lumped mass to a principal parametric excitation. They used
single-mode approximation as the chosen physical parameters do not yield internal
resonance. The present authors addressed the same system of Zavodney and Nayfeh and
sPresently at Mechanical Engineering Department, Indian Institute of Technology, Guwahati 781 001, India.
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found internal resonance conditions [11}13] for certain mass and position of the attached
element. In these studies, the internal resonance of 1 : 3 was considered along with principal
parametric [11] and combination parametric [12, 13] resonances, and many interesting
"xed-point, periodic, quasi-periodic and chaotic responses were obtained using
perturbation techniques.

For a general review of literature for parametrically excited system one may refer the texts
of Nayfeh and Mook [14], SzemplinH ska-Stupnica [15] and Cartmell [16] and for the
analysis of dynamical systems the texts by Nayfeh and Balachandran [17], Iooss and
Joseph [18], Chow and Hale [19] and Kuznetsov [20].

As the importance of internal resonance is well established in the non-linear systems,
many researchers studied two-degree-of-freedom systems with quadratic or cubic
non-linearities having one}one, one}two, one}three type of internal resonances [11}23]
for principal and/or combination parametric resonances. Due to the complexity in the
analysis, most of the studies in non-linear systems are limited to two degrees of freedom and
a very few studies are available for systems with three-mode interactions [24}30].

In the present paper, the parametrically excited cantilever beam with a lumped mass having
cubic non-linearities of geometrical and inertial type is analyzed to obtain the non-linear
responses when it is excited at a frequency nearly twice that of the second-mode natural
frequency. The system parameters are so chosen that 1 :3 : 5 internal resonances are exhibited.
By virtue of this internal resonance, a simultaneous combination resonance of sum type
occurs in the system. The method of multiple scales (mms) is used to study the "xed-point,
periodic, quasi-periodic and chaotic responses of the system for various control parameters.

2. ANALYSIS

The temporal equation of motion of a uniform cantilever beam of length ¸ carrying a
mass m at an arbitrary position d from the "xed end (Figure 1) subjected to base motion
z"Z

0
cosXt in the non-dimensional form can be given by [11]
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where ( 0 )"d( )/dq. u
n
, f

n
and u

n
are, respectively, the transverse displacement, damping

parameter and frequency of the nth mode, f
nm

is the forcing term in nth mode due to the
modal interaction of mth mode and q is the time. While an

klm
is the geometric non-linear term,

bn
klm

and cn
klm

are the inertial non-linear terms present in the nth mode due to the modal
interactions of k, l and mth modes (see Appendix of reference [11]). The small dimensionless
parameter e has been introduced as a book-keeping device to indicate the smallness of
damping, non-linear terms and excitation. Due to the presence of large number of coupled
non-linear terms it is practically impossible to get a closed-form solution. Hence, here a
perturbation method (mms) is used to determine the approximate solutions of the system.

2.1. PHYSICAL EXAMPLE

Following Zavodney and Nayfeh [10] and keeping in view the internal resonance of
1 : 3 : 5, a metallic beam is considered with the following properties:

¸"125)4 mm, I"0)04851 mm4, E"0)20936]106 N/mm2, Z
r
"1 mm

c"0)1 N s/mm2, o"0)03332 gm/mm, k"4)2, J"0)1223307, b"0)24,



Figure 1. Base-excited cantilever beam with an attached mass.
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The roots of the characteristic equation are numerically found to be i
1
"1)71297,

i
2
"3)02257, i

3
"4)23208 and the corresponding non-dimensional frequencies are u

1
"1,

u
2
"3)11472 and u

3
"5)27647. The book-keeping parameter e and the scaling factor j are

taken as 0)01 and 0)1 respectively. The coe$cients of damping (f
n
), excitation ( f

nm
) and

non-linear terms (an
klm

, bn
klm

, cn
klm

) are found to be of the same order. The values of other
required parameters given in Appendix A and in reference [13] are calculated to be

a
e11

"0)6604576, a
e12

"!17)9176, a
e13

"39)64944,

a
e21

"9)013, a
e22

"!57)1463, a
e23

"57)39503,

a
e31

"!97)1194, a
e32

"0)14784, a
e33

"!211)15,

Q
1
"0)2822713, Q

2
"7)57212, Q

3
"18)10312, Q

4
"!1)64962]10~3,

Q
5
"!7)70371, Q

6
"17)62617, Q

7
"1)97654, Q

8
"8)60796,

f *
11
"5)37879]10~2, f *

12
"5)48805]10~3, f *

13
"8)80996]10~3,

f *
21
"6)62088]10~3, f *

22
"0)1083383, f *

23
"2)20869]10~2,

f *
31
"7)21249]10~2, f *

32
"0)1498814, f *

33
"0)1428675,

f*
1
"4)496846]10~3, f*

2
"2)871499]10~3, f*

3
"1)95911]10~4.



30 S. K. DWIVEDY AND R. C. KAR
2.2. PERTURBATION SOLUTION

The approximate solution of equation (1) can be obtained using the method of multiple
scales. Let
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Substituting equations (2) into equation (1) and equating the coe$cients of e0 and e to zero,
one has
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. The solution of equation (3) is given by
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where cc indicates the complex conjugate of the preceding terms.
For principal parametric resonance of second mode, the external excitation is nearly equal

to twice the frequency of the second mode. Also, due to 1 : 3 : 5 internal resonances, this
external frequency is approximately equal to the combination of the "rst- and third-mode
frequencies. Hence, simultaneous principal parametric and combination resonances along
with the internal resonances of 1 : 3 : 5 occur in this system. Introducing the external
detuning parameter p

1
and internal detuning parameters p
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and p
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as
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and substituting equations (5) and (6) into equation (4) and eliminating secular terms we
have
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for n"3,
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where a prime denotes the derivative with respect to ¹
1
. Since the higher modes (n*4) are

neither directly excited by external excitation nor indirectly excited by internal resonances,
it can be shown from equation (10) that the response amplitudes of these modes die out due
to the presence of damping. Letting A

n
"1

2
a
n
(¹

1
) expMib

n
(¹

1
)N (where a

n
and b

n
are real) in

equations (7}9) and then separating into real and imaginary parts, one obtains
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where
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The above equations are known as the reduced equations. For steady state, a@
i
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i
"0,

i"1, 2, 3. Thus, we have a set of non-linear algebraic equations which is solved numerically
to obtain the "xed-point response of the system. The "rst order solution of the system can
be given by
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2.3. STABILITY EQUATIONS OF STEADY STATE RESPONSE

By directly perturbing the reduced equations, one can study the stability of the non-trivial
steady state solution. But, as the reduced equations (11) have the coupled terms a
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trivial solutions and hence the stability of the trivial state cannot be studied by directly
perturbing equation (11). To circumvent this di$culty, normalization method is adopted by
introducing the transformation
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into equation (11). Carrying out trigonometric manipulations, one arrives at the following
normalized reduced equations or the Cartesian form of modulation equations.
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Now perturbing the above equations, one obtains
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where T is the transpose and [J
c
] is the Jacobian matrix whose eigenvalues will determine

the stability and bifurcation of the system. The stability boundary of the linear system (i.e.,
the trivial state) can be obtained from the eigenvalues of the matrix [J
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] by letting
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The "rst order solution of the system in terms of p
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3. NUMERICAL RESULTS AND DISCUSSIONS

From equations (12) and (16), it may be noted that for steady state, the response
frequencies for the "rst three modes are exactly in the ratio 1 : 3 : 5 irrespective of the
frequency of external excitation / and are independent of the detuning parameter p

3
.

Before "nding the non-linear response of the system with principal parametric resonance
of second mode, it is essential to determine the trivial state stability boundary as it predicts
the bifurcation parameters at which the equilibrium state of the beam becomes unstable.
Figure 2 shows the trivial state stability boundary of the system with k"4)2, b"0)24 and



Figure 2. Trivial state stability boundary with 1 : 3 : 5 internal resonance for (1) l"0)001, (2) l"2)0, (3) l"5,
(4) l"10, (5) l"20.
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J"0)12233. For low values of damping and forcing parameter (curve 1), the critical points
are clearly observed near /"2u

2
and u

1
#u

3
. Here, two zones of instability are observed

for low values of C and with increase in C, these regions merge to form a single unstable
region. Curves 2}5 in this "gure depict the trivial state instability regions for l"2, 5, 10,
and 20 respectively. One may note that with a moderate increase in damping, the unstable
region remains almost unaltered and with very high values of l (e.g., l"20) not only the
width of the unstable region decreases but also the threshold value of instability increases,
resulting in the improvement of the stability of the trivial state. For a small change in C, the
increase in the width of the unstable region in this case is much higher than that of
the principal parametric resonance of the "rst mode with two- [11] and three-mode [28]
interactions. Since the system may have stable non-trivial (n-t) "xed-point, periodic,
quasi-periodic or even chaotic responses inside this trivial state unstable region, an attempt
has been made to explore the possibility of the existence of these responses and study their
bifurcation and stability for a wide range of values of the control parameters.

The "xed-point response is obtained by solving numerically the reduced equations (11)
and its stability is determined by studying the eigenvalues of the Jacobian matrix J

c
. Solid

and dotted lines in the response curves, respectively, represent the stable and unstable
branches. Figure 3 shows the frequency response curve for C"1, l"5)0. The trivial state
loses its stability by two subcritical pitchfork bifurcations (PFBs) (/"6)06 and 6)41).
The entire frequency range can be divided into three zones, the "rst zone being left to the
unstable region and the third zone to the right of the unstable one. The unstable region of
the trivial branch is the second zone. While in the third zone the response is purely trivial, in
the "rst zone the system has many unstable branches with a stable non-trivial (n-t) and
trivial branch. Also, in the "rst zone, the "rst- and third-mode "xed-point responses are
quenched while that of second mode increases with a decrease in the frequency of external
excitation /. When one increases the frequency / across the subcritical PFB at /"6)06 or
decreases / across the subcritical PFB at /"6)41, blue sky catastrophe will be observed in
the system, as it is attracted by a strange attractor toward a stable "xed point at in"nity due
to the absence of any deterministic stable attractor in the near vicinity. The n-t stable
branch in the "rst zone loses its stability by subcritical Hopf bifurcation (HB) (/"6)03) so
that the response may jump down from the stable n-t branch to the stable trivial state which
becomes unstable at the subcritical PFB(/"6)06).
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With decrease in damping [e.g., l"2, Figure 3(b)], while the number of unstable n-t
branches increases, that of the stable n-t branches remains unchanged. Also, there is no
change in the trivial state PFB points (/"6)06 and 6)41), but n-t stable branch becomes
unstable at /"6)01. Hence, with an increase in damping, though the improvement of trivial
state stability is marginal, that of the n-t state stability is remarkable.

For low values of C, Figure 4(a) (C"0)075, l"2) shows only the second-mode frequency
response curve as the "rst- and third-mode stable "xed-point responses are quenched and
Figure 3. (a) Frequency response curve for C"1)0, l"5; quenching of the "rst- and third-mode stable "xed
point response. (b) Frequency response curve for C"1)0, l"2.



Figure 3. Continued.
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the bifurcation points for all the three modes are identical. Here the trivial state has
alternate stable and unstable regions with bifurcation points of subcritical PFB (/"6)22),
supercritical PFB (/"6)235), and supercritical HBPs at /"6)27 and 6)28. These two
HBPs act as the global origins for the periodic responses. One may note that the n-t branch
emanating from the supercritical BP is stable and hence, unlike the previous case (Figure 3),
here the trajectory will not escape to in"nity, but the system will su!er a jump-up
phenomena at the subcritical PFB (/"6)22).



Figure 4. Frequency response curves for second mode with (a) C"0)075, l"2; (b) C"0)2, l"5.
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With further increase in l or decrease in C, the system will have only the trivial response
when the control parameter crosses the threshold value of the trivial state stability. For
example, when C"0)0075 and l"5, the system has only a trivial stable branch.
Figure 4(b) shows the frequency response of the second mode for C"0)2, l"5, which is
topologically equivalent to that of Figure 4(a). Here, the bifurcations occur at /"6)21
(subcritical PFB), 6)25 (supercritical PFB) and at 6)26 and 6)29 (supercritical HBPs). From
Figures 3 and 4, it may be noted that with an increase in C, for the same value of v, the trivial
unstable zones merge and the stable n-t branch becomes unstable by subcritical HB. For high
values of C [e.g., C"2)5 ("gure not shown)], this n-t branch becomes unstable between two
subcritical HBPs.

As topologically equivalent response curves are obtained with variation in the control
parameters, it is important to note the change of the bifurcation points with the control
parameters so as to avoid the system failure. Figure 5 shows the bifurcation diagram for
l"5 where curves 1, 2, 3 and 4 are, respectively, the set of n-t HBP, trivial PFB,
supercritical n-t HBP and trivial PFB points. It may be noted that bistability region exists to
the left of curves 1 and 2, respectively, for the values of control parameters above and below
their point of intersection (O). Hence, one may observe jump-up from the trivial state to the
n-t stable branch for values of control parameters below O and jump-down from the n-t



Figure 5. Bifurcation set for l"5. Lines 1: n-t subcritical HBP, 2: trivial subcritical PFB, 3: n-t supercritical
HBP and 4: trivial supercritical HBP/PFB, C-chaotic, p-periodic, h-supercritical HBPs.
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stable branch to the trivial stable branch for the values control parameters above O. While
for lower values of C, curve 4 is the set of supercritical HBPs, when it meets curve 3 the set of
subcritical HBPs, it becomes supercritical PFB. Hence, one should not operate the system
with the values of the control parameters, lying in the shaded area between curves 2 and 3, as
the response is chaotic in this zone.

The variation of the periodic responses with C and / having global origin at the
supercritical HBP for l"2 is shown in Figure 6. While orbit 1 is drawn for /"6)270 and
C"0)2, orbits 2}4 are plotted for C"0)075 with increasing values of /. Orbits 1 and
2 indicate that, for a higher value of C, the periodic response created near the supercritical
HBP has a higher response amplitude. It is observed that the periodic orbits created at the
supercritical HBP (e.g., /"6)270, orbit 1) decrease with increase in / and disappear at
the other supercritical HBP (/"6)28). With increase in / (curves 2}4), the response
amplitude decreases and the second-mode periodic orbit gets deformed before it disappears
at the other supercritical HBP. Though the system undergoes simultaneous resonances of
principal parametric of second-mode and combination parametric of u

1
#u

3
, the

amplitude of the second-mode periodic response is negligible in comparison to those of
the "rst and third modes. This is due to the fact that /, in this case, is closer to u

1
#u

3
than

to 2u
2
; although the di!erence of frequencies in these two cases in marginal. Along with

these periodic responses, where the system oscillates about the unstable trivial state, there
exists another set of periodic responses (Figure 7) where the second-mode response does not
oscillate about the trivial state.

As damping increases, these periodic responses disappear when the associated frequency
of external excitation falls in the stable zone marked by the trivial state stability boundary.
But, with decrease in damping, the system response may be chaotic depending on the
amplitude of external excitation C.

Figure 8 shows the response obtained by the numerical integration of the temporal
equation of motion for di!erent values of / with C"1 and l"2. The time responses
Figure 8(a, b) are plotted, respectively, for /"5)5 and 6)5. Both perturbation result
(Figure 3) and numerical integration of the temporal equation indicate the presence of the
stable trivial "xed-point response. In Figure 8(c), the time response shows the presence of
unstable "xed point at /"6)225. For the same physical parameters as in Figure 8(c), with
another set of initial conditions, the system response is found to be chaotic. Figure 8(d)



Figure 6. Variation of periodic responses with / and C near supercritical HBP. (1) /"6)27, l"2, C"0)2;
C"0)075, l"2: (2) /"6)274, (3) /"6)278, (4) /"6)279.
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shows the PoincareH section of this chaotic response. This shows that the prediction of the
perturbation results (Figures 2 and 3) are in good agreement with the numerical integration
of temporal equation of motion.

Figure 9 shows the time response which consists of laminar stretches of pseudo-
quasiperiodic oscillations with interruptions in the form of chaotic bursts for /"6)3,
C"0)2 and l"2. This type of transition to chaos, commonly known as the type II
intermittency [17], occurred due to the presence of subcritical Hopf bifurcation in the
"xed-point response. With decrease in /, the periodic response shown in Figure 10(a, b) for
C"0)5, /"6)22, l"7 becomes chaotic by the type II intermittency route to chaos. From
the time response (c}e) it is evident that the chaotic outburst irregularly erupts from and
returns to or revisits the original periodic response. The phase portraits of this chaotic
response is shown in Figure 11 which indicate the chaotic bursts shuttle between the



Figure 7. Periodic responses with C"0)075, l"2: (1) /"6)277, (2) /"6)278.
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unstable non-trivial and trivial "xed points. One may observe that the chaotic outburst is
more frequent in this case than the previous one (Figure 9). Hence with an increase in C the
system becomes more chaotic. Also, the maximum value of the Lyapunov exponents is
found to be positive characterizing the response to be chaotic (Figure 8(d)}11).

4. CONCLUSIONS

The non-linear dynamics of a slender beam carrying a lumped mass subjected to a base
excitation is studied for principal parametric resonance of second mode which is
simultaneously resonated by combination resonance (u

1
#u

3
) due to the presence of



Figure 8. Time spectra and PoincareH section obtained from the numerical integration of the temporal equation
of motion with C"1, l"2; (a) /"5)5, (b) /"6)5, (c, d) /"6)225.
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internal resonance of 1 : 3 : 5. Though for lower values of C, distinct zones of instability are
observed in the trivial state, with increase in C, these zones merged to form a single unstable
zone with sub- and supercritical pitchfork bifurcations at the ends. The "rst- and
third-mode stable responses are quenched while that of the second mode increases with
decrease in the frequency of external excitation. The bifurcations in the non-trivial "xed
point branch are subcritical Hopf types. Periodic responses are observed only for lower
values of C near the unstable zone at u

1
#u

3
. With other parameters "xed, a decrease in



Figure 9. Time spectra showing type II intermittency route to chaos for /"6)3, C"0)2, l"2.

Figure 10. (a, b) Phase portrait and time spectra showing the periodic response with C"0)5, /"6)22, l"7.
(c}e) Time spectra showing periodic-chaotic transition via type II intermittency with /"6)2, C"0)5, l"7.
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Figure 11. Phase portrait showing the chaotic burst shuttle between the unstable trivial and non-trivial "xed
points.
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/ or an increase in C makes the periodic response chaotic through an intermittency route to
chaos of type II. The numerical integration of the original temporal di!erential equation are
in good agreement with the perturbation results. The bifurcation set is plotted so that one
can visualize the safe zone to avoid a catastrophic failure of the system. PoincareH section
and Lyapunov exponents are obtained to verify the chaotic response.
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APPENDIX A

The expressions for the terms Q
n
are given by
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have the same de"nition as in the Appendix of reference [13].
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APPENDIX B: NOMENCLATURE

a
n

response amplitude of the nth mode
c coe$cient of damping
d position of the attached element from the base (Figure 1)
E Young's modulus of the beam material
f
nm

forcing parameter in nth mode due to interaction of the mth mode
g acceleration due to gravity
I moment of inertia of the beam section
J non-dimensional moment of inertia of the attached mass about its centroidal axis

perpendicular to X}> plane
J
0

moment of inertia of the attached mass about its centroidal axis perpendicular to X}>
plane

¸ length of the beam
m mass of the attached element
r scaling factor
s reference variable along the beam
t time
u
n

time modulation of the nth mode
v lateral displacement of the beam
z vertical base excitation
Z

0
amplitude of base excitation in mm

Z
r

reference amplitude of base excitation in mm
q non-dimensional time
/ non-dimensional frequency of external excitation
t(x) shape function of the nth linear mode
u

n
non-dimensional frequency of the nth mode

X frequency of the external excitation
( )

t
L( )/Lt

( )
s

L( )/Ls
( 0 ) L( )/Lq
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